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Abstract. We have studied the electrical conductivity of n+-n--n+ GaAs structures in 
which the thickness of the n- layer is comparable with the mean donor separation. At low 
temperatures, electrical conduction is dominated by a process in which electrons tunnel 
across the sample via shallow donor impurities close to the centre of the n- layer. By studying 
the magnetoresistance of such samples we have investigated the effect of a magnetic field on 
the donor wavefunction in GaAs. Our measurements are compared with the approximate 
analytical expression for the donor wavefunction and with numerical solutions of the ground- 
state hydrogen wavefunctions in megatesla fields developed by astrophysicists. 

1. Introduction 

Theoretical studies of the effects of a magnetic field on a hydrogen atom have been 
motivated by their relevance to strongly magnetised objects in astrophysics (e.g. white 
dwarfs, neutron stars and black holes). The energy levels and wavefunctions of the 
hydrogen atom in megatesla fields have been calculated numerically by Rosner et a1 
(1984). The results of these calculations may be applied to hydrogenic impurity states in 
semiconductors. The much larger Bohr radius of the impurity states means that the 
corresponding magnetic fields are of the order of a few teslas. Buczko et a1 (1987) have 
used the results of Rosner et a1 (1984) for the hydrogen ground-state wavefunction to 
solve the percolation problem for electron transport in strongly localised states in a 
direct-gap semiconductor. Their results are in good agreement with magnetoresistance 
data for n-type GaAs in the nearest-neighbour hopping regime in magnetic fields up to 
12 T. 

In this paper we report measurements of the electrical conductivity of nf-n--ni 
GaAs mesa samples in which the thickness of the n- layer is less than 0.15 pm. Previously, 
we have shown that the conductivity of such very short mesas is dominated by a simple 
tunnelling process which we have called single impurity-assisted tunnelling (Main et a1 
1986). An important feature of the impurity-assisted tunnelling process is the large and 
anisotropic magnetoresistance. In this paper we describe the angular dependence of the 
magnetoresistance of three mesa samples, of differing thicknesses, in magnetic fields up 
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Figure 1. The structure of the n+-n--nt GaAs mesa samples. 
The weakly doped ‘active’ layer has length L and diameter 
d. The direction of current flow through the sample is repre- 
sented by the arrow J .  
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to 12 T. By analysing the angular dependence we can obtain information about the form 
of the impurity wavefunction in a magnetic field. The results of the investigation are in 
good agreement with numerical calculations of the hydrogen ground-state wavefunction 
in megatesla fields. 

2. The sample structure 

The structure of the samples studied is illustrated in figure 1. The samples were grown 
by MBE and mounted in standard transistor headers. Samples were grown with n- layer 
thicknesses L of 129, 113 and 97.5 nm. Each sample was prepared by conventional 
lithography in the form of a circular mesa of diameter d = 200 pm. Ohmic contacts were 
made to the top and bottom surfaces by diffusion of Au-Ge. The heavily doped n+ 
regions have a total resistance of about 0.2 S2 and may be regarded as metallic contacts. 

In each sample, the weakly doped n- layer has a donor concentration ND of 1.5 
( + O S )  x 1015 cm-3 and is expected to be moderately compensated, with acceptor con- 
centration N A  of about 0.4 X 1015 ~ m - ~ .  At low temperatures the electron transport in 
bulk material of such a low impurity concentration is by electrons hopping between the 
localised donor states (Emel’yanenko eta1 1974). In our samples, however, Lis  less than 
twice the mean separation of the donor impurities, i.e. 

L < 2 ~ 6 ~ 1 ~ .  

In such very short mesas, it becomes favourable for electrons to tunnel elastically across 
the sample via shallow donors situated close to the centre of the layer rather than hopping 
between several donor sites. 

3. Theory of impurity-assisted tunnelling conduction 

The conduction process is treated as two successive transitions, from the left-hand (LH) 
n+ contact into an impurity state in the n- layer and then from the impurity state into 



Tunnelling as a probe of the donor wavefunction 4441 

n* I n- I n+ 
s:o 

Figure 2. The electron potential energy -eV(X)  through a cross section of the mesa samples. 
EF is the Fermi energy in the metallic n +  layers. E, and X,  are the energy and position 
respectively of a donor state j in the active layer. The length of the potential barrier created 
by the n- region is reduced by a distance t at each n+-n- interface owing to screening effects. 
See text for the explanation of the other symbols. 

the right-hand (RH) n+ region (figure 2). We label the electron states in the LH Fermi 
sea by wavevectors k (energy Ek), in the RH Fermi sea byp (energy Ep) and the impurity 
states by a site index j (energy Ej). Introducing the corresponding transition rates w ,  
(= wjk) and Wpj (= W,) , the rate equations for the occupancies f k  and f ,  of the LH and 
impurity states are 

j k  = -2 ( f k  - f , > w k j  ( 1 )  
i 

Under steady-state conditions, j j  = 0. This gives 

where l / t ,  = &Wkj and l / z R j  = XPWpi. By identifying l / t ,  as the decay rate for an 
electron tunnelling from impurity site j into unoccupied LH states, we may write 

1/t Lj  = 1/t (X,)  = v TL (X,) 

where v is the attempt rate of an electron in the bound impurity state and TL(Xj) is the 
transmission coefficient from the impurity state at position Xi into LH continuum states 
(see figure 2). Similarly l / t R j  gives the decay rate into RH states. 

The current (from LHS to RHS) is given by I = f?&fk, where -e is the electronic 
charge. Use of equations ( 1 )  and (3) gives, after some manipulation, 

( 4 )  I =  - e x   ti/ + ti/> 
1 

where 

F j  = ( f k  - f p ) w k j w p j .  
k ,p  

The expression for I is to be evaluated when there is a small voltage bias V across the 
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structure which raises the RH Fermi level by eVwith respect to the LH Fermi level. Since 
the electric field in the conducting n+ contacts is small, we may takef, to be an equilibrium 
Fermi-Dirac distribution at temperature T: 

fk - f o ( E k )  = {exp[P(E, - EF)I + l}-' 

where /3 = l /kBTand E F  is the Fermi energy in the contacts. Thus 

fp = f o ( E ,  - eV) = {exp[P(E, - E ,  - eV)] + l}-] 

We may now evaluate equation (4) for the current assuming that, at low tempera- 
tures, the tunnelling is elastic (E ,  = E, = Ep)  and the bias is small (eV < EF). This gives 
a linear I/V dependence and a conductance G = Z/V: 

-1 -1 
z L j  t R j  afo(Ej) G = -e* E zLj + t;;f 8Ej  ' 

To take account of a distribution of impurity energies, we average over Ejusing a density 
D(E,) of states, which is the number of impurities per unit energy range per unit volume. 
This procedure is independent of the average over spatial sites which is performed by 
converting the sum over j into a volume integral. Thus 

7 + ioL' A d X j  D ( E j )  d E j  i 
where L* is the effective width of the n- region (see figure 2) and A the area of cross 
section. This gives 

d X  
G = e2D(EF) ioL* 

z L ( m  + zR(XI)  

where, at low temperatures, we have taken the derivative of the Fermi function to be a 
delta function. In section 4 the relation between L and L* is determined. 

In the absence of a magnetic field the transmission coefficients TL and T R  will be 
dominated by the decay of the s-state impurity wavefunction. Hence we can write 

TL = K exp( -2X/ao) TR = K exp[-2(L - X)/ao] 

where a. is the effective Bohr orbit radius, about 10 nm in GaAs, and K is a prefactor 
which may be taken to be constant. The integrand in equation (6) then has a sharp peak 
at X = L*/2 of half-width AX - a. showing that only impurities near the middle of the 
active layer contribute to the conduction. On performing the integral we find that 

G = -e2AD(EF)Kvao exp( - L*/ao) {tan-'[exp(- L*/ao)] - n/4}. 

For our specimens, L* 9 ao; so this reduces to 

G = e2AD(E~)K(n/4)vUo exp(-l*/ao).  ( 7 )  
Since the electron transitions do not require the absorption or emission of a phonon, 

the impurity-assisted tunnelling process is independent of temperature. In our samples, 
in zero magnetic field, the measured resistance is predominantly the resistance of the n+ 
layers and contacts. In a large magnetic field the donor wavefunctions, and hence the 
tunnelling conductivity, are severely restricted, particularly in the transverse direction. 
The measured sample resistance is then principally that of the active layer. 
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Figure 3. Measured resistance against T - ’  for a 
mesa of nominal length L = 129 nm at various 
magnetic fields ( E  I J ) .  

Figure 4. A schematic illustration of the impurity- 
assisted tunnelling process in a magnetic field E ,  
where B is oriented at an angle 0 with respect to 
the sample axis: -, a single contour of constant 
wavefunction amplitude for a donor situated in 
the centre of the n- layer. I ymax 1 is the maximum 
value of the donor wavefunction at the n+-n- 
boundary (see section 6). 

4. Impurity-assisted tunnelling in a magnetic field 

In figure 3 the resistance of a sample of thickness L = 129 nm in transverse (J I B )  
magnetic fields of between 4 and 11.5 T is shown as a function of inverse temperature. 
At temperatures higher than about 5 K the electrical conductivity of the sample shows 
an activated dependence on temperature. The activation energy, in the temperature 
range T = 18 K to T = 6 K, increases from 4.6 k 0.3 meV in a magnetic field of strength 
B = 8 T to 6.1 +- 0.3 meV for B = 11.5 T. The magnitude of the activation energy is 
about half the ionisation energy for an isolated donor impurity in a magnetic field of 
10 T predicted from numerical studies of the hydrogen atom by Rosner et a1 (1984). This 
suggests that the electrical conductivity of the sample above about 5 K is dominated by 
thermally ionised donor electrons in the weakly doped layer. The ‘freeze-out’ of the 
activated conduction mechanism at lower temperatures reveals the temperature-inde- 
pendent impurity-assisted tunnelling process. 

The effect of a magnetic field on electron transport between localised impurity states 
in a weakly doped semiconductor has been reviewed by Shklovskii and Efros (1984). 
Their expression for the asymptotic form of the donor impurity wavefunction in a strong 
magnetic field may be applied to the much simpler case of single-impurity-assisted 
tunnelling. 

For a donor in an isotropic semiconductor the Hamiltonian has the same form as for 
a hydrogen atom with the mass of the electron replaced by the effective mass m* and 
the Coulomb term multiplied by the inverse of the lattice dielectric constant. The effect 
of the magnetic field is to introduce an extra term e2B2p2/8m* into the Hamiltonian, 
where p is the cylindrical radius ( p  I B ,  zllB) which acts to pull the electron towards an 
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Figure 5. The resistance R of the L = 
129nm (0, O), 113nm (0, H) and 
97.5 nm (0, +) samples in transverse 
(O,O, 0) and longitudinal (0, H, +) 
magnetic fields B at a temperature of 
2 K: -, best agreement obtained 
between the transverse magnetoresistance 
data and the theory (equation (10)). 

axis z passing through the donor ion and parallel to the magnetic field (figure 4). For 
p + A2/ao, where A 2  = h/eB, the wavefunction is dominated by the magnetic field. In 
the direction perpendicular to the magnetic field the wavefunction varies as 

V ( P )  exP(-P2/4h2) (8) 
for z = 0. 

An expression for the conductivity of the impurity-assisted tunnelling process in a 
transverse magnetic field (0 = 90’) may now be derived. In a strong transverse magnetic 
field B (perpendicular to the current flow), the asymptotic form of the wavefunction 
shows that 

TL = K‘ exp( -X2/2A2 ) TR = K’ exp[-(L* - X)’/2A2] 

where A = (h/eB)”2 is the magnetic length and K’ a constant prefactor. The form of the 
integral in equation (6) shows that the contributing impurities lie within a distance 
AX - 2A2/L* of the centre of the active layer. Since L*‘/2A2 B 1, the integral may be 
approximately evaluated and gives 

GI = e 2 A D ( E , ) K ’ v ( d 2 / L * )  e x ~ ( - L * ~ / 8 A ~ )  (9) 
and the magnetic field dependence of the resistance is of the form 

R,(B) 0~ B e~p(L*~eB/8h) .  (10) 
As in the zero-field case, the exponent in the conductance is proportional to the impurity 
wavefunction squared at a distance L*/2 from the donor site. 

From equation (lo),  a plot of log R ,  versus B should be approximately linear, the 
slope being proportional to L*2. Examples of such plots are shown in figure 5 for samples 



Tunnelling as a probe of the donor wavefunction 4445 

of length L = 129, 113 and 97.5 nm in transverse and longitudinal magnetic fields at 
T = 2 K. At such low temperatures the sample resistance is independent of temperature 
(see figure 3). The full curves in figure 5 represent a fit to the transverse mag- 
netoresistance of the three samples with a function of the form 

R,(B) = Ro + R I B  exp(EB) (11) 

where Ro is the zero-field resistance, R1 a constant of proportionality and E approxi- 
mately the slope of the graph. From equation (10) the effective length of the n- layer is 
given by 

L* = (8Eh/e)’/’. (12) 
In general, L*  will not be the same as the length of the n- layer as grown. The width 

of the potential barrier, created by the n- layer, is reduced by the diffusion of the free 
electrons from the n+ regions at each interface as shown in figure 2. The effective length 
L* = L - 2t, where t is  the width of the diffusion region. 

The diffusion width may be estimated by studying the band bending in the vicinity 
of the interface s = 0, between a heavily doped n+ region (s < 0) and a lightly doped 
region (s > 0) in the Thomas-Fermi approximation. The coordinate s is used to define 
distances measured relative to the doping discontinuity which we take as s = 0. If for 
s > 0 the fixed charge is neglected, the space charge arisesonly from conduction electrons 
with local density n(s) and the local Fermi energy EF(s) = (fi’ /2m*)(3~r~n(s))~/~ 4 0 
as s 4 CO. For s < 0, EF(s) 4 E, = (h2/2m*)(3n2ND)2/3 as s 4 -x, where ND is the 
uncompensated donor density in the n+ region. Poisson’s equation for the electrostatic 
potential V(s) is 

d 2V/ds2 = - ~ ( s ) / E , E ~  (13) 

where p ( s )  = -en(s) for s > 0 and -e[n(s) - N,] for s < 0, and E ,  is the dielectric 
permittivity of GaAs. If the zero of potential is taken to be the conduction band edge as 
s + CQ, then the condition of constancy of the Fermi level gives 

EF(s) - eV(s) = 0. (14) 

Equations (13) and (14) give rise to a non-linear equation for EF(s) or V(s), the first 
integral of which gives 

where y = 8/15Ez/’L$~ and LTF = (2EFo&,eo/3NDe2)’i2 is the Thomas-Fermi screening 
length. Continuity of d EF/ds at s = 0 then requires 

EF(0) = $EFo.  (15) 

EF(s) = ev(s) = ~OOL$FEFO/[X f (1500)114LTF]4. (16) 

Further integration with the boundary condition (15) then gives, fors  > 0, 

If the fixed charge in the lightly doped n- region is not neglected, then equation (16) is 
not accurate for large values of s since, in a partially compensated sample, the Fermi 
level must then pass asymptotically through the shallow donor level at an energy ED 
below the band edge, as shown in figure 2. Thus we can take the screening length t to be 



4446 I P Roche et a1 

Table 1. The effective length L; derived from the sample capacitance, the effective length 
L - 2t derived from screening theory, and effective length LB derived from the transverse 
magnetoresistance of the samples. 

L C L; L - 2t L;, 
(nm) (PF) (nm) (nm) (nm) 

129 2 1 1 4 0 2 4  9 2 2 5  9 2 f 4  75.2 2 0.2 
113 2 1 153 2 4 85 2 5 75 2 4  71.9 2 0.2 
97.5 t 1 - - 60 t 4 63.2 2 0.2 

given approximately by the distance at which the electron potential energy -eV(t) = 
- E D ,  i.e. 

t/LTF = (900E~o  ED)^'^ - (1500)”4. (17) 

For ND = 1.5 (kO.5) X lo1* ~ m - ~ ,  EFO = 70 k 15 meV and, taking E D  = 5.7 meV, 
the total screening length is estimated to be 2t = 30-40 nm. As equation (14) is only 
valid for electrostatic potentials that vary slowly in comparison with the wavelength 
AF = 30 nm of electrons at the Fermi energy in the metallic layer, equation (17) is 
only a rough approximation of the screening length. 

The capacitance of the samples is a measure of the dielectric width of the active layer. 
We measured the capacitance C of samples of diameter 400pm using a low-level 
capacitance bridge with excitation frequency between 25 and 150 kHz. Measurements 
were made at high transverse magnetic fields where the large magnetoresistance allows 
a reasonable phase angle in the capacitance bridge circuit. The results are given in table 
1, together with the derived active lengths Lz , given by the inverse capacitance per unit 
area and L - 2t. The active length LT, , derived from the transverse magnetoresistance 
resistance of the samples (equations (11) and (12))  is also shown. Note that LT. and 
L$ are experimental estimates of the real active length of the sample L* as shown in 
figure 2. 

The agreement between LT, and our estimate of L - 2t is very good, particularly for 
the two shorter samples. At  high magnetic fields ( B  > 8 T )  the resistance of the two 
larger samples shown in figure 5 is less than the theoretical curves predict. A possible 
mechanism for this is discussed later. 

The longitudinal magnetoresistance of these samples is harder to treat analytically. 
The shrinkage of the hydrogen atom in the longitudinal direction, arising from the 
increased binding energy of the state, is small. Shklovskii and Efros (1984) suggest that 
the wavefunction in the z direction is given by 

exp(-z/aB) (18) 

a B  = T L ~ / [ ~ ~ * E ~ ( B ) ] ~ / *  (19) 

where aB is the magnetic-field-dependent Bohr radius: 

and E,(B) is the binding energy. Rosner et a1 (1984) have calculated the dependence of 
Eo on B for the hydrogen atom. If their results are substituted into equations (18) and 
(19), the effective lengths derived from the longitudinal magnetoresistance of the three 
samples are very similar, about 110 f 10 nm. However, the analytical expression for the 
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wavefunction in the z direction suggested by Shklovskii and Efros has a considerably 
stronger dependence on B than the numerical solutions of Rosner et a1 (1984) do. 

5. The hydrogen atom in a magnetic field 

Rosner et a1 (1984) have calculated the wavefunctions and energies for a hydrogen atom 
in an arbitrary magnetic field. Measuring the energies in effective rydbergs and lengths 
in effective Bohr radii the Hamiltonian for the problem for spin-down states is given by 

H = -V2 - 2/r + 2p1, + p 2 p 2  - 2p (20) 

where the magnetic field points along the z direction, p 2  = x 2  + y 2  and r2 = x 2  + y 2  + z2 .  
The magnetic field parameter p is given by 

p = B/Bo. (20a) 

Here B is the magnetic field strength in teslas and 

B O  = R H ( a / a O  > *  
where a = 0.53 nm is the Bohr radius of hydrogen, and BH = 4.7 x lo5 T. Therefore, 
taking a. = 10 nm for donor states in GaAs, the value of Bo is 13.2 T. Because of the 
non-integrable nature of the Hamiltonian (20) its eigenfunctions can only be determined 
numerically. Details of such calculations have been described by Rosner et a1 (1984). 
However, in order to obtain highly accurate values of the wavefunctions also in regions 
(5-10)ao away from the donor site, it turned out to be necessary to modify the numerical 
method; instead of directly integrating, in the spherical expansion of the states, the 
system of coupled differential equations resulting from the projection of Schrodinger's 
equation on the different angular momentum components we chose to expand the 
radial functions in terms of a complete orthogonal basis set (of Sturmian type) and to 
diagonalise the Hamiltonian matrix. The results presented here were obtained using a 
set of 3600 basis functions. The computations were performed on the Cray 1 at the 
University of Stuttgart. 

In figure 6 the ground-state (1s) wavefunction is shown for magnetic field parameters 
p = 0.4,0.6 and0.9, corresponding to B = 5.3,7.9 and 11.9 T. The full curves represent 
surfaces of constant 1 q 1 * ( 1  li, I = lo-', . . . , up to lo-'' from the donor site 
outwards). The length scale has units ao, where a. = 10 nm for the donor states. The 
diagrams illustrate the stronger and stronger deformation of the impurity wavefunction, 
with the regions in the vicinity of the nucleus (donor site) being influenced to a much 
lesser extent than those farther out. 

The numerical solutions of the ground-state wavefunction in the transverse ( z  = 0) 
direction are shown in the full curves in figure 7 on a plot of log/ qL I versus p 2  for 
p = 0-1.1 at distances 0 < p < Sao. In figure 7, most of the wavefunction is concentrated 
within a few Bohr radii of the donor site. Therefore, normalisation of the wavefunction 
does not significantly affect its asymptotic form, as may be seen from the agreement 
between the numerical and analytical solutions. At large distances from the donor 
site ( p  > 5ao), / qL 1 approaches the 'strong'-field asymptotic form, represented by the 
straight broken lines, suggested by Shklovskii and Efros (equation (8)). At a distance 
corresponding to half the effective length of our samples (3ao < p < 4a,), the con- 
striction of the wavefunction if /3 is increased from 0.4 to 1.1 is about half that predicted 
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0 500 100, 

Figure 6 .  Some numerical solutions of the ground-state hydrogen-like wavefunction in a 
magnetic field: -, contours of constant I y 1 ’. The magnetic parameter p is proportional 
to the field strength (equation (20~) ) .  

Figure 7. The hydrogen-like wavefunction 
for different p versus p 2 ,  where p is the 
distance from the donor site in the trans- 
verse ( z  = 0) direction: ---, dependence 
predicted by equation (8). 

by equation (18). Consequently, the effective length LT, derived from the transverse 
magnetoresistance is about 10% larger for each sample than that given in table 1. 

In the longitudinal direction ( p  = 0) the shrinkage of the wavefunction due to the 
magnetic field is very much less than would be expected from equations (18) and (19). 
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For example I vll I * is reduced to 80% of the zero-field value for z = 3ao, and 40% of the 
zero-field value for z = 4ao if a magnetic field of P = 0.8 is applied. Rosner et a1 (1984) 
have calculated that Eo(P = 0.8) = l .8Eo(P = 0); the corresponding decrease in the 
Bohr radius (equation (19)) gives a reduction in I I ’ (equation (18)) that is six times 
larger at these distances. 

The longitudinal magnetoresistance of the three mesa samples shown in figure 5, 
RI,( P = O.~) /RI~(P  = 0) = 80, is larger, by a factor of about 40, than can be explained by 
the calculated shrinkage of the wavefunction. A possible explanation for this discrepancy 
would be an increase in L* at high B due to the rise in the donor binding energy, leading 
to a decrease in t (equation (17)). However, R,(B) would then be expected to rise much 
faster than log R,(B) 0~ B. Since any increase in L* would presumably be independent 
of the direction of B ,  the angular dependence of the magnetoresistance may be used to 
investigate further the impurity-assisted tunnelling process and the shape of the donor 
wavefunction. 

6. The angular dependence of impurity-assisted tunnelling 

The angular dependence of the resistance R ( 8 )  of the three mesa samples at 4.2 K in 
several fixed magnetic fields, corresponding to P = 0.4-0.8, is shown in figure 8. Here 8 
is the angle between the current and field directions. A small series resistance of 
about 0.2 R has been subtracted from the measured sample resistance. The subtracted 
resistance is the temperature-independent resistance of the sample as it is cooled from 
room temperature to 4 .2K.  This is taken to be the resistance of the n+ layers and 
electrical contacts. The remaining resistance R( 8) is, therefore, the resistance of the 
active layer only. The subtraction of the series resistance is only significant for the 
shortest mesa at the lowest magnetic fields shown. 

At each magnetic field, R ( 8 )  passes through a minimum, corresponding to the 
longitudinal magnetoresistance RI,, and a maximum, corresponding to the transverse 
magnetoresistance R ,  . The rise in the magnetoresistance anisotropyR,/RIl as the sample 
thickness is increased is due to the greater deformation of the impurity wavefunction at 
larger distances from the donor site, as may be seen in figure 6. 

The dominant term in the sample conductance (equations (7) and (9)) is the mag- 
nitude of 1 V I ’ at a distance L*/2 from the donor site, i.e. 

where Ym,, is the largest value of V along the n+-n- boundary for a donor situated in 
the centre of the sample. Therefore, if any dependence of the pre-exponential term on 
the direction of B is ignored, R,/Rll is equal to the anisotropy of the wavefunction: 

R,(P)/Rll(P) = I VII(Y, P )  I ’ / I  VLk ,  PI I 
where I in the direction of the field, I qL I is the magnitude of q 
in the perpendicular direction and r = L*/2. In table 2 the distance r ,  in units of ao, 
derived from the numerical solution of the wavefunction (figure 6), is given for each 
sample at different P.  

The resistance anisotropy does not support the view that L*  increases with increasing 
B. For the shortest mesa, r is almost constant, independent of P. For the two larger 
samples there is a srnall systematic decrease in r with increasing P. The same effect is 
apparent in the transverse magnetoresistance of the samples (figure 5) .  At high fields 

I is the magnitude of 
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Figure 8. The resistance at 
various magnetic fields of 
the (a) L = 128 nm, (b )  L = 
113 nm and (c) L = 97.5 nm 
samples as a function of the 
angle 0 between the current 
and magnetic field direc- 
tions: -, theoretical pre- 
dictions using the numerical 
wavefunction. 
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Table 2. The distance r from the donor site, for which the anisotropy 1 vlll '/I vl 1 *is equal to 
the measured magnetoresistance anisotropy R,/Rl, of the samples. 

L = 129 nm L = 113 nm L = 97.5 nm 

B r r r 
p ( T )  R,/Rll (units of a,) R,/Rl, (units o f % )  RIRl (Units o f % )  

0.4 5.28 19.8 4.1 13.0 3.8 4.4 3.1 
0.5 6.60 49.0 3.9 31.1 3.7 7.2 3.0 
0.6 7.92 126.6 3.9 62.3 3.6 18.3 3.1 
0.7 9.24 302.1 3.8 128.7 3.5 35.9 3.1 
0.8 10.56 652.0 3.7 216.2 3.4 65.5 3.1 

Table 3. The effective sample length L* provides the best agreement between the angular 
dependence of 1 Vmaxl and R ( 0 )  for the three samples (figure 8). Here a, is taken to be 
10 nm. 

129 2 1 7.90 t 0.3 79 k 3 
113 k 1 7.45 k 0.2 74.5 ? 2 
97.5 i. 1 6.10 t 0.1 61 2 1 

the sample resistance R,(B) falls below the theoretical curve derived for a fixed value 
of L*. Although both trends are consistent with a decrease in L",  a more plausible 
explanation is that a parallel conduction process, probably two-step hopping, is signifi- 
cant in the larger samples at high transverse magnetic fields. 

The full curves in figure 8, with whichR( 8 )  is compared, are derivedfrom the angular 
shape of the wavefunction. The theoretical curves show the dependence of 1 qmax 1 -* on 
8 for a fixed sample length. For each value of 8 it is necessary to find the maximum 
value of 1 q I * at the edge of the active layer. Since the surfaces of constant I q I are 
approximately ellipsoidal, it is important to note that, except for 8 = 0" and 8 = 90", the 
largest value of q ,  for a donor situated in the centre of the n- layer, occurs at an angle 
of less than 8 with respect to the field direction and a distance r > L*/2 from the donor 
site (figure 4). The length L*,  given in table 3, for which 1 qmax( 8 )  I -*is derived, is chosen 
to be twice the mean value of r in the magnetic field range /3 = 0.4-0.6 shown in table 2. 
Good agreement is therefore ensured between R,/R,[ and the theoretical curves for the 
three lowest fields. 

The agreement between R ( 8 )  and I qmax(8) 1 -* for /3 = 0.4-0.6 is remarkably good 
for all three samples. At high fields (/3 > 0.6), the resistance of the two longer samples 
in the 8 = 90" direction is less than the theoretical values, as expected from the curl-off 
in R,(B) (figure 5). The agreement between the experimental points and the theory is 
further demonstrated in figure 9. 

The theoretical curves in figures 8 and 9 are scaled to agree with the experimental data 
at 8 = 0". This adjustment is necessary because of the anomalously large longitudinal 
magnetoresistance discussed in section 5. The good agreement between the theoretical 
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30 60 90 120 Figure 9. The magnetoresistance data in figure 8(a) for p = 
0.6 shown on a linear plot of resistance against angle. 0 

9 (deg) 

and experimental curves implies that the scaling applied works for all 6. This in turn 
implies a magnetoresistance of the form 

R(B)  Ro(B) I V m a x ( L * / 4  I -2  

where Ro(B) accounts for most of the longitudinal magnetoresistance and is independent 
of 6, 

7. Discussion 

We have shown that the angular dependence of the magnetoresistance of the very short 
mesas can be understood in terms of conduction via donor impurities located close to 
the middle of the n- layer and that it is closely related to the shape of the donor 
wavefunction. In this section the assumptions made in our model are discussed and their 
likely effect on the agreement that we obtain between the theoretical curves and the 
measured sample resistance is assessed. 

The transverse magnetoconductance (equation (9)) contains a pre-exponential term 
proportional to A2 and hence inversely proportional to B. This dependence on B is not 
present in the asymptotic expression for the wavefunction (equation (8)) but arises from 
the integration of the transition probabilities over the sample length (equation (6)). A 
similar, but much weaker, B-dependence is present in the longitudinal magneto- 
conductance through the magnetic-field-dependent Bohr radius (see equations (7) and 
(19)). The angular dependence of the conductance should, therefore, contain an extra 
pre-exponential B-dependence that varies with the field direction. The extra B-depen- 
dence is largest for the transverse case when the wavefunction falls most rapidly with 
increasing B. Since the numerical and analytical forms of the wavefunction are then 
similar, it is reasonable to assume a transverse magnetoconductance of the form 

The calculated resistance, in the 6 = 90" direction, in figure 8 would then be larger, by 
one order of magnitude in a field of 10 T. In the longitudinal direction the numerical 
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solutions of the wavefunction are less dependent on B than equations (7) and (19) 
suggest, Therefore the extra pre-exponential B-dependence is small and equation (21) 
is reasonable. 

In our theoretical interpretation of impurity-assisted tunnelling, the transition rate 
for an electron tunnelling into, or out of, an impurity state is proportional to I qmaxl *. 
The probability of electrons tunnelling at other angles, where the transition rate is less, 
is assumed to increase, or decrease, in proportion to I qmax 1 '. This would be true only if 
the shape of the wavefunction were uniform, i.e. spherical. In a magnetic field the 
wavefunction is distorted; the relative probability of an electron transition at angles 
other than the optimum will vary with the strength and direction of the field. The 
magnitude of this effect may be estimated by plotting 1 I *, for a donor in the centre of 
the active layer, along the n+-n- boundary. 

1 * in figure 6 
may curve more sharply at higher B. Therefore the relative contribution to the current 
of electrons tunnelling at small angles to B is less and the magnetoresistance is larger. 
We find that the overlap of 1 q 1 with the plane of the n+-n- boundary is reduced by a 
factor of 8 between 0 and 10.6 T for L' = 7 . 9 0 ~ ~ .  This compares with a reduction in 
1 Vmax I * by a factor of 2. Therefore, by including the three-dimensional aspect of the 
wavefunction, the predicted magnetoresistance rise for the largest sample is Rll(B = 
10.6 T)/R(B = 0 T)  = 8. This is insufficient to explain the observed longitudinal mag- 
netoresistance of this sample, RII(B = 10.6 T)/R(B = 0 T )  = 80. 

In the transverse direction the B-dependence of the overlap of 1 q I * with the n+n- 
boundary is well described by the variation in I qmaxi *. For B = 5.3 T the predicted 
resistance of the L = 129 nm sample is 20% larger if the whole wavefunction is con- 
sidered than that given by the reduction in I qmax 1 only; for B = 9.3 T the predicted 
resistance is 30% larger. 

To evaluate the overlap of 1 q I * with the n+-n- boundary for all possible values of 
8,  L* and B would be difficult. From this brief analysis, we find that the result would be 
to reduce the theoretical resistance anisotropy by a factor of about 8 for L* = 7 . 9 0 ~  at 
B = 10.6 T. Inclusion of the extra angle-dependent term discussed earlier increases this 
anisotropy by about one order of magnitude. The scale of these two competing effects 
is small compared with the exponential variation in I qmaxI ' shown in figures 8 and 9. 

To summarise, we have used the numerical solutions of the ground-state hydrogen- 
like wavefunction in strong magnetic fields of Rosner et a1 (1984) to interpret the angular 
dependence of the magnetoresistance of very short n+-n--n+ GaAs mesa samples. We 
find that, by substituting the solutions of Rosner et a1 (1984) into our simple impurity- 
assisted tunnelling model, good agreement can be obtained between the theoretical 
angular dependence of the magnetoresistance and our measurements. This agreement 
exists provided that the length of the potential barrier in our samples is assumed to be 
less than the thickness of the n- layer as grown. The difference can be explained by 
screening effects at the boundaries between the n+ and n- regions. 

Along the direction of the magnetic field the contours of constant I 

A more detailed description of this work is contained in Roche (1988). 
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